meta regression and bubble plot with metafor package in R -
i working on meta-regression on association of year , medication prevalence 'metafor' package.
the model used 'rma.glmm' mixed-effect model logit transformed 'metafor' package.
my r script below:
dat<-escalc(xi=a, ni=sample, measure="plo") print(dat) model_a<-rma.glmm(xi=a, ni=sample, measure="plo", mods=~year) print(model_a)
i did significant results performed bubble plot model. found there no way perform bubble plot straight away 'ram.glmm' formula. did alternatively:
wi<-1/dat$vi plot(year, transf.ilogit(dat$yi), cex=wi)
apparently got 'crazy' results, questions are:
1> how weight points in bubble plot study sample size? points in bubble plot should proportionate study weight. here, used 'wi<-dat$vi'. vi stands sampling variance, got 'escalc()'. doesn't seem right.
2> model correct investigate association between year , medication prevalence? tried 'rma' model got totally different results.
3> there alternative way perform bubble plot? tried:
percentage<-a/sample plot(year, percentage)
the database below:
study year sample study 1 2007 414 364 study 2 2010 142 99 study 3 1999 15 0 study 4 2000 17 0 study 5 2001 20 0 study 6 2002 22 5 study 7 2003 21 6 study 8 2004 24 7 study 9 1999 203 82 study 10 2009 647 436 study 11 2009 200 169 study 12 2010 156 128 study 13 2009 10753 6374 study 14 2007 143 109 study 15 2001 247 36 study 16 2004 318 184 study 17 2012 611 565 study 18 2013 180 167 study 19 2006 344 337 study 20 2007 209 103 study 21 2013 470 354 study 22 2010 180 146 study 23 2005 522 302 study 24 2000 62 30 study 25 2001 79 39 study 26 2002 85 43 study 27 2011 548 307 study 28 2009 218 216 study 29 2006 2901 2332 study 30 2008 464 259 study 31 2010 650 393 study 32 2008 2514 704
Comments
Post a Comment