solver - Solve with real positive parametrs in Mathematica -
i solve eta in mathematica
solve[-sqrt[1-(a eta b )]+sqrt[1-(a eta c)]-(1-eta) n g + (1-eta) ns p == 0,eta]
with parameters being reals , positive , eta reals , positive
how include these assumptions ?
sometimes, simpler problems, enter like
reduce[-sqrt[1-(a eta b)]+sqrt[1-(a eta c)]-(1-eta)n g+(1-eta)ns p==0 && a>0 && b>0 && c>0 && n>0 && g>0 && ns>0 && p>0 && eta>0, eta]
and wait , hope finishes. didn't finish me in amount of time willing wait , used different approach.
note: have intentionally left few in[] , out[] in can see using mathematica step. other lines doing manually.
for problem there @ least dozen different ways of doing in mathematica. did way answer when might otherwise wait minutes or hours , never see result automatically calculated.
-sqrt[1-(a eta b)]+sqrt[1-(a eta c)]-(1-eta)n g+(1-eta)ns p==0 -sqrt[1-(a eta b)]+sqrt[1-(a eta c)]==(1-eta)n g-(1-eta)ns p in[1]:=expand[(-sqrt[1-(a eta b)]+sqrt[1-(a eta c)])^2]==((1-eta)n g-(1-eta)ns p)^2 out[1]=2-a b eta-a c eta-2 sqrt[1-a b eta]sqrt[1-a c eta]==((1-eta)g n-(1-eta)ns p)^2 -2 sqrt[1-a b eta]sqrt[1-a c eta]==((1-eta)g n-(1-eta)ns p)^2-(2-a b eta-a c eta) (-2 sqrt[1-a b eta]sqrt[1-a c eta])^2==(((1-eta)g n-(1-eta)ns p)^2-(2-a b eta-a c eta))^2 4(1-a b eta)(1-a c eta)==(((1-eta)g n-(1-eta)ns p)^2-(2-a b eta-a c eta))^2 in[2]:= simplify[reduce[4(1-a b eta)(1-a c eta)==(((1-eta)g n-(1-eta)ns p)^2- (2-a b eta-a c eta))^2,eta],a>0 && b>0 && c>0 && n>0 && g>0 && ns>0 && p>0 && eta>0] out[2]= (b==c || g n!=ns p) && ( eta == root[-4 g^2 n^2+g^4 n^4+8 g n ns p-4 g^3 n^3 ns p-4 ns^2 p^2+ 6 g^2 n^2 ns^2 p^2-4 g n ns^3 p^3+ns^4 p^4+(8 g^2 n^2+2 b g^2 n^2+ 2 c g^2 n^2-4 g^4 n^4-16 g n ns p-4 b g n ns p-4 c g n ns p+ 16 g^3 n^3 ns p+8 ns^2 p^2+2 b ns^2 p^2+2 c ns^2 p^2- 24 g^2 n^2 ns^2 p^2+16 g n ns^3 p^3-4 ns^4 p^4) #1+(a^2 b^2-2 a^2 b c+ a^2 c^2-4 g^2 n^2-4 b g^2 n^2-4 c g^2 n^2+6 g^4 n^4+8 g n ns p+ 8 b g n ns p+8 c g n ns p-24 g^3 n^3 ns p-4 ns^2 p^2-4 b ns^2 p^2- 4 c ns^2 p^2+36 g^2 n^2 ns^2 p^2-24 g n ns^3 p^3+6 ns^4 p^4) #1^2+ (2 b g^2 n^2+2 c g^2 n^2-4 g^4 n^4-4 b g n ns p-4 c g n ns p+ 16 g^3 n^3 ns p+2 b ns^2 p^2+2 c ns^2 p^2-24 g^2 n^2 ns^2 p^2+ 16 g n ns^3 p^3-4 ns^4 p^4) #1^3+(g^4 n^4-4 g^3 n^3 ns p+ 6 g^2 n^2 ns^2 p^2-4 g n ns^3 p^3+ns^4 p^4) #1^4 &,1] || eta == root[...more...&,2] || eta == root[...more...&,3] || eta == root[...more...&,4] || g n == ns p) in[3]:= toradicals[eta == root[...same...&,1]] out[3]= eta==...atrulyhugeresultforthefirstoffourroots...
try check , understand how done
Comments
Post a Comment